Algebra-I B. Math - First year Mid-Semestral Exam

Time: 3hrs Max score: 100

Answer question 1 and any three from the rest.

- (1) Decide whether the following statements are TRUE or FALSE. Justify. No points will be awarded in the absence of a correct justification.
 - (a) There exists a group that has exactly 5 elements of order 5.
 - (b) A group of order 30 has at most 7 subgroups of order 5.
 - (c) S_4 contains a normal subgroup of order 3.
 - (d) If p is the smallest prime dividing the order of G then any subgroup of index p is normal.
 - (e) O contains a subgroup of finite index.

5+5+5+5+5

- (2) (a) Let $S^1 \subset \mathbb{C}^{\times}$ be the circle group. Show that
 - (i) $\mathbb{R}/\mathbb{Z} \cong S^1$.
 - (ii) There is a subgroup of S^1 which is isomorphic to \mathbb{Q}/\mathbb{Z} . Describe the elements of this subgroup.
 - (b) Show that if G is a group with A, B subgroups of G, such that $A \subseteq N_G(B)$, then $A \cap B$ is a normal subgroup of A and $AB/B \cong A/A \cap B$.
 - (c) Let G be a group, let N be a normal subgroup of G, and let $K \subseteq G$ be another subgroup. Let $\pi: G \longrightarrow G/N$ be the canonical homomorphism. Show that $\pi(K) = KN/N$. 10 + 8 + 7
- (3) (a) Show that two elements of S_n are conjugate in S_n if and only if they have the same cycle type.
 - (b) Hence deduce that the number of conjugacy classes of S_n equals the number of partitions of n.
 - (c) Compute $o(C_{S_n}(12)(34))$, $n \geq 4$, where $C_G(a)$ denotes the centralizer of the element a in G. 10 + 5 + 10
- (4) Let G be a finite group operating on a finite set X. For each element $q \in G$, let X^g denote the subset of elements of X fixed by g that is, $X^g = \{x \in X \}$ X/gx=x.

 - (a) Prove that $\sum_{x \in X} o(G_x) = \sum_{g \in G} |X^g|$. (b) Prove that o(G).(number of orbits) $= \sum_{g \in G} |X^g|$. 10 + 15
- (5) Let H be a normal subgroup of a group G.
 - (a) Show that G acts on H by conjugation i.e., for $g \in G, h \in H, (g,h) \mapsto$ ghg^{-1} defines an action of G on H.

- (b) Hence show that $G/C_G(H)$ is isomorphic to a subgroup of Aut(H). (c) Deduce that if o(H)=5 and if o(G) is odd, then $H\subseteq Z(G)$. 5+10+10